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Abstract

This study examines central configurations within the framework of the 5-body problem,
with a specific focus on systems where four of the masses lie on a common circle. This
investigation does not assume that the four co-circular masses form a central configuration
on their own. I explore potential placements of a fifth body that would transform the
entire 5-body system into a central configuration. This approach broadens the scope
of understanding by considering configurations that deviate from standard symmetry or
balance.

Furthermore, the study delves into specific geometric arrangements of the co-circular
four bodies, identifying cases where their particular shapes or distributions inherently
prevent the inclusion of a fifth body that could satisfy the central configuration condi-
tions. By combining analytical methods with geometric considerations, this work aims to
provide deeper insights into the constraints and possibilities of central configurations in
multi-body gravitational systems. These findings contribute to the broader understand-
ing of celestial mechanics and the intricate interplay of forces in systems with nontrivial
geometric constraints.
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1 Introduction

Central configurations in celestial mechanics are critical in understanding the dynamics of
multi-body gravitational systems. These configurations correspond to special arrangements
of masses where the mutual gravitational forces and the centrifugal forces, in a co-rotating
reference frame, are in equilibrium. Such configurations play a pivotal role in studying the
evolution, stability, and periodic solutions of multi-body systems.

In this section, we focus on analyzing central configurations involving five bodies, where
four masses are arranged symmetrically, and a fifth mass is introduced to maintain or alter
the central configuration. We begin with a simple symmetric case where four identical masses
form a square, exploring the conditions under which a fifth mass can be added to preserve
the central configuration. We then relax the symmetry to investigate scenarios where the
four masses form two identical pairs or other geometric arrangements, such as rectangles,
extending the discussion to cases where the configuration is no longer square but still satisfies
the equilibrium conditions.

The analytical methods used involve detailed calculations of the system’s center of mass,
gravitational forces, and the resulting accelerations on each body. By leveraging symmetry
and simplifying assumptions, we derive conditions under which the system maintains a central
configuration and some impossible central configurations, offering insights into the broader
study of gravitational systems with arbitrary mass distributions.

1.1 Central Configuration in the N-Body Problem

In celestial mechanics, the motion of particles in an N -body system is governed by the fol-
lowing equation of motion:

:xk “
ÿ

i‰k

mipxi ´ xkq

|xi ´ xk|3
, (1.1)

where xk P R2 represents the position of the k-th particle, and mi ą 0 is its mass (i “

1, . . . , N). The configuration of the system is defined as the vector x “ px1, . . . , xN q P R2N ,
encapsulating the positions of all N particles.

The center of mass of the system is given by:

xc “

řN
i“1mixi

řN
i“1mi

P R2 , (1.2)

which represents the weighted average position of all the particles.
A collision configuration occurs when two or more particles occupy the same position in

space, mathematically defined as:

∆ “ tx P R3N | xi “ xj for some i ‰ ju , (1.3)

which represents all configurations in which at least one pair of particles has collided.
A central configuration is a special type of non-collision configuration x P R2Nz∆ that

satisfies a specific balance of forces. Formally, a configuration is a central configuration if
there exists a constant λ ą 0 such that for each k “ 1, . . . , N :

´λpxk ´ xcq “
ÿ

i‰k

mipxi ´ xkq

|xi ´ xk|3
. (1.4)
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Physically, since the acceleration vector for the mass mi is:

Ai “
ÿ

i‰k

mipxi ´ xkq

|xi ´ xk|3
, (1.5)

the central configuration is a state where the acceleration vector for each particle points to
the center of mass and is proportional to its displacement from the center of mass, with the
proportionality constant λ. This implies that when the particles are arranged in such a way
initially the system remains dynamically balanced, maintaining a fixed shape during motion
as Figure 1 illustrates. Central configurations often correspond to solutions where the system
undergoes uniform rotation or a collapse to a singularity in a homothetic manner.

Figure 1: When three identical masses are released from a central configuration, specifically
arranged in the shape of an equilateral triangle in the figure, the system will preserve its
equilateral triangular shape as it moves.

Central configurations are also vital in the analysis of singularities. For example, in a
homothetic collapse, the configuration might shrink or expand uniformly until the masses all
collapse to a single point, or conversely, it could correspond to an expanding system.

In practical applications, central configurations provide insight into the qualitative behav-
ior of N -body systems. They help predict long-term behavior, such as periodic motions and
the possible configurations that particles might settle into in a gravitational system. These
ideas are pivotal in celestial mechanics.

1.2 Central Configurations with Four Masses on the Same Circle

In the context of the five-body problem, where four masses are positioned on a circle, we aim
to obtain a central configuration by placing the fifth body in the system. To do so, we need
to analyze the forces acting on the system, considering both the gravitational interactions
between the corner masses and the central mass.

Let the four masses m1,m2,m3,m4 be placed symmetrically on the circle of radius R, the
positions of these four masses are:

xi “ Rpcos θi, sin θiq , i “ 1, 2, 3, 4 . (1.6)

We will focus on the case that the center of mass of these four masses lies on the origin, that
is to say:

xc “
m1x1 ` m2x2 ` m3x3 ` m4x4

m1 ` m2 ` m3 ` m4
“ p0, 0q . (1.7)
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Then we try to place the fifth mass m5 be placed in the system. The acceleration of m5

due to any corner mass mk, where k “ 1, 2, 3, 4 is. In the five-body problem, where four
masses are symmetrically arranged on a circle, our goal is to achieve a central configuration
by introducing a fifth mass into the system. This involves analyzing the gravitational forces
acting within the system, focusing on the interactions between the four peripheral masses and
the central fifth mass.

In this report, we will explore special cases of five-body central configurations and examine
the conditions under which a fifth mass can be added to a system of four masses. Specifically,
we will investigate how different arrangements of the four masses, such as a square or circle,
impact the possibility of achieving a central configuration. We will also explain why, in some
cases, it is impossible to achieve a central configuration by adding a fifth mass when the
four masses form certain shapes. Through this analysis, we aim to better understand the
conditions that must be satisfied for such configurations to exist.

2 Four Bodies Form a Square

In this subsection, we focus on a symmetric arrangement of four identical masses m, posi-
tioned at the vertices of a square inscribed in a circle of radius R, centered at the origin. The
goal is to determine where a fifth mass m5 can be placed to satisfy the central configuration
condition. Symmetry plays a crucial role in this analysis, as it significantly simplifies the cal-
culations and provides insight into how equilibrium is achieved. By leveraging this symmetry,
we investigate the conditions under which the fifth mass contributes to a stable central con-
figuration and verify the forces acting on all masses. This examination provides a foundation
for understanding more complex configurations involving identical and non-identical masses.

2.1 Four Identical Masses

Let’s now consider an example where the four bodies of equal mass m form a square on a
circle of radius R, centered at the origin. We aim to find where the fifth body m5 can be
placed to satisfy the central configuration condition.

Set four equal masses m are at the following positions:

x1 “ Rpcos 0, sin 0q “ pR, 0q , x2 “ Rpcos
π

2
, sin

π

2
q “ p0, Rq , (2.1)

x3 “ Rpcosπ, sinπq “ p´R, 0q, x4 “ Rpcos
3π

2
, sin

3π

2
q “ p0,´Rq , (2.2)

which forms a square on the circle as Figure 2 shows. Now we try to place the fifth body m5

at an arbitrary position x5 “ pa, bq in the plane. The center of mass of the system is:

xc “
mpx1 ` x2 ` x3 ` x4q ` m5x5

4m ` m5

“
mrpR, 0q ` p0, Rq ` p´R, 0q ` p0,´Rqs ` m5x5

4m ` m5

“
m5x5

4m ` m5
. (2.3)

Now consider a symmetry, due to the symmetry, it makes sense to place the fifth body at the
origin. Suppose x5 “ p0, 0q, that is, the fifth body is placed at the center of the square. In
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Figure 2: The positions of four masses on the same circle.

this case, the center of mass simplifies to:

xc “
m5p0, 0q

4m ` m5
“ p0, 0q . (2.4)

We want to check that placing m5 at x5 satisfies the condition for central configuration:

´λpx5 ´ xcq “
ÿ

i‰5

mipxi ´ x5q

|xi ´ x5|3
. (2.5)

It is easy to see that the left-hand side ´λpx5 ´xcq “ 0, check that the right-hand side of the
central configuration condition becomes zero as well:

A5 “
ÿ

i‰5

mipxi ´ x5q

|xi ´ x5|3

“
mx1
|x1|3

`
mx2
|x2|3

`
mx3
|x3|3

`
mx4
|x4|3

“
m

R3

“

pR, 0q ` p0, Rq ` p´R, 0q ` p0,´Rq
‰

“ p0, 0q . (2.6)

Thus, m5 satisfies the central configuration condition.
Now we check the other masses m1, m2, m3, m4, by symmetry, we only need to check

one of them, say m1 here. The acceleration of m1 due to m2 is:

A2Ñ1 “
mp0 ´ R,R ´ 0q

?
R2 ` R23

“
m

2
?
2R2

p´1, 1q . (2.7)

Similarly, the acceleration of m1 due to m3 and m4 are:

A3Ñ1 “
mp´R ´ R, 0q

p2Rq3

“
m

4R2
p´1, 0q , (2.8)

A4Ñ1 “
mp0 ´ R,´R ´ 0q

?
R2 ` R23
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“
m

2
?
2R2

p´1,´1q . (2.9)

The the acceleration of m1 due to m5 is:

A5Ñ1 “
m5p´R, 0q

R3
“

m5

R2
p´1, 0q . (2.10)

Adding all forces on m1:

A1 “ A2Ñ1 ` A3Ñ1 ` A4Ñ1 ` A5Ñ1 . (2.11)

Perform the sum, we can obtain the net force:

A1 “
m

2
?
2R2

p´1, 1q `
m

4R2
p´1, 0q `

m

2
?
2R2

p´1,´1q `
m5

R2
p´1, 0q

“

ˆ

m

R2

ˆ

´
1

?
2

´
1

4

˙

´
m5

R2
, 0

˙

. (2.12)

For m1 to satisfy the central configuration condition:

A1 “

ˆ

m

R2

ˆ

´
1

?
2

´
1

4

˙

, 0

˙

“ ´λpx1 ´ xcq “ ´λpR, 0q . (2.13)

Equating components:

m

R2

ˆ

´
1

?
2

´
1

4

˙

“ ´λR ðñ λ “
m

R3

ˆ

1
?
2

`
1

4

˙

ą 0 . (2.14)

Hence, m1 satisfies the central configuration condition.
By symmetry, the forces on m2,m3, and m4 are identical in magnitude but rotated by

π{2, π, and 3π{2, respectively. Thus, the central configuration condition is satisfied for all
four outer masses.

Thus, the fifth body m5 placed at the origin satisfies the central configuration condi-
tion due to symmetry. The forces on m1,m2,m3, and m4 are consistent with the central
configuration condition, and the system is balanced.

2.2 Two Identical Mass Pairs

Now we consider a relaxed version with a bit weaker symmetry. When the conditions are
relaxed such that m1 “ m3 and m2 “ m4, the center of mass remains at the origin due to
symmetry. We also place the fifth body m5 on the center of mass of this system and prove
this remains a central configuration.

The center of mass is given by:

xc “
m1x1 ` m2x2 ` m3x3 ` m4x4 ` m5x5

m1 ` m2 ` m3 ` m4 ` m5
. (2.15)

Using m1 “ m3 and m2 “ m4, the center of mass becomes:

xc “
m1pR, 0q ` m2p0, Rq ` m1p´R, 0q ` m2p0,´Rq ` m5p0, 0q

2m1 ` 2m2 ` m5
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“
p0, 0q

2m1 ` 2m2 ` m5
“ p0, 0q . (2.16)

Thus, the center of mass remains at the origin.
The force on m5 due to the other four masses is:

A5 “

4
ÿ

i“1

mipxi ´ x5q

|xi ´ x5|3
. (2.17)

Place the fifth body on the center of mass; thus, x5 “ xc “ p0, 0q, this simplifies to:

A5 “

4
ÿ

i“1

mipxi ´ x5q

|xi ´ x5|3
“

4
ÿ

i“1

mixi
|xi|3

. (2.18)

The contributions from opposite pairs m2,m4 and m1,m3 are:

A5 “
m1pR, 0q

R3
`

m2p0, Rq

R3
`

m3p´R, 0q

R3
`

m4p0,´Rq

R3

“
m1pR, 0q

R3
`

m1p´R, 0q

R3
`

m2p0, Rq

R3
`

m2p0,´Rq

R3
“ p0, 0q . (2.19)

Thus, the acceleration of m5 is:

A5 “ p0, 0q . (2.20)

Hence, m5 satisfies the central configuration condition.
Now we check the masses m1 and m3, similarly, we only need to check one of them due

to symmetry. For m1 at x1 “ p0, Rq, the net force is:

A1 “
ÿ

i‰1

mipxi ´ x1q

|xi ´ x1|3
. (2.21)

Substituting the positions of the other masses:

A1 “
m2p´R,´Rq

pR2 ` R2q3{2
`

m3p´2R, 0q

p2Rq3
`

m4p´R,Rq

pR2 ` R2q3{2
`

m5p´R, 0q

R3
. (2.22)

The x´ and y´ components of the force are:

A1,x “
m2p´Rq

pR2 ` R2q3{2
`

m3p´2Rq

p2Rq3
`

m4p´Rq

pR2 ` R2q3{2
`

m5p´Rq

R3
, (2.23)

A1,y “
m2p´Rq

pR2 ` R2q3{2
`

m4R

pR2 ` R2q3{2
“ 0 . (2.24)

The central configuration should satisfy:

A1,x “
´2m2R

p2R2q3{2
`

´2m3R

p2Rq3
`

´m5R

R3
“ ´λR

ðñ λ “
2m2

p2R2q3{2
`

2m3

p2Rq3
`

m5

R3
ą 0 . (2.25)
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Thus, m1 and m3 satisfy the condition of central configuration as well, for λ “ 2m2

p2R2q3{2 `

2m3
p2Rq3

` m5
R3 . However, by symmetry, the masses m2 and m4 satisfy the central configuration

condition only when λ “ 2m3

p2R2q3{2 ` 2m2
p2Rq3

` m5
R3 ,so we can conclude that:

λ “
2m2

p2R2q3{2
`

2m3

p2Rq3
`

m5

R3
“

2m3

p2R2q3{2
`

2m2

p2Rq3
`

m5

R3
. (2.26)

Since m3 and m2 are arbitrary, this configuration is a central configuration only when m1 “

m2 “ m3 “ m4, which is equivalent to the case we studied in 2.1.

3 Four Bodies Not Form a Square

Now we want to find a central configuration that four bodies do not form a square. A natural
guess is that when we add the fifth body into the system, the five-body system forms a
pentagon. I will prove that this is a central configuration and thus it is possible to place
the fifth body in the system to form a central configuration when four bodies do not form a
square.

3.1 Four Bodies Form a Rectangle

We now consider the case where the four massesm1, m2, m3, m4 are arranged in a rectangle,
as illustrated in Figure 3. Let four co-circular masses m1,m2,m3,m4, where m1 “ m3 and
m2 “ m4, are at the corners of a rectangle, the positions are:

x1 “ Rpcos θ, sin θq “ pa, bq , x2 “ Rpcospπ ´ θq, sinpπ ´ θqq “ p´a, bq ,

x3 “ Rpcospθ ´ πq, sinpθ ´ πqq “ p´a,´bq , x4 “ Rpcosp´θq, sinp´θqq “ pa,´bq . (3.1)

Place the fifth mass m5 at the origin. The center of mass is given by:

Figure 3: The case for four co-circular masses forming a rectangle configuration.

xc “
m1x1 ` m2x2 ` m3x3 ` m4x4 ` m5x5

m1 ` m2 ` m3 ` m4 ` m5
. (3.2)

Using m1 “ m3 and m2 “ m4, the center of mass becomes:

xc “
m1pa, bq ` m2p´a, bq ` m1p´a,´bq ` m2pa,´bq ` m5p0, 0q

2m1 ` 2m2 ` m5
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“
p0, 0q

2m1 ` 2m2 ` m5
“ p0, 0q . (3.3)

Thus, the center of mass remains at the origin.
It is easy to check that m5 satisfies the central configuration condition:

A5 “
mpa, bq

R3
`

mp´a, bq

R3
`

mp´a,´bq

R3
`

mpa,´bq

R3

“
mpa, bq

R3
`

mp´a,´bq

R3
`

mp´a, bq

R3
`

mpa,´bq

R3
“ p0, 0q . (3.4)

For m1 at p´a,´bq, the acceleration of m1 is due to m2,m3,m4, and m5. The acceleration
of m1 due to the m2 is:

A2Ñ1 “
mp´2a, 0q

8a3
“ ´

mp1, 0q

4a2
. (3.5)

The acceleration of m1 due to the m3 is:

A3Ñ1 “
mp´2a,´2bq
?
4a2 ` 4b2

3 “ ´
mpa, bq

4
?
a2 ` b2

3 . (3.6)

The acceleration of m1 due to the m4 is:

A4Ñ1 “
mp0,´2bq

8b3
“ ´

mp0, 1q

4b2
. (3.7)

The acceleration of m1 due to the m5 is:

A5Ñ1 “ ´
mpa, bq

?
a2 ` b2

3 . (3.8)

The total acceleration of m1 is:

A1 “ A2Ñ1 ` A3Ñ1 ` A4Ñ1 ` A5Ñ1

“ ´

ˆ

5ma

4R3
`

m

4a2
,
5mb

4R3
`

m

4b2

˙

. (3.9)

Equating both sides of the condition of the central configuration, we have

λ “
5m

4R3
`

m

4a3
“

5m

4R3
`

m

4b3
. (3.10)

Therefore, this configuration is a central configuration only when a “ b, which is equivalent
to the case we studied in 2.1.

3.2 Four Bodies Forming a Kite

We now turn to the case where four co-circular masses, denoted m1,m2,m3,m4, form a
configuration that resembles a kite, as shown in Figure 3.1. In this configuration, the masses
are arranged such that the masses m1 and m3 are equal, and the masses m2 and m4 are also
equal. However, we do not necessarily assume that these four masses lie on a common circle
at this point.

Let the four masses m1,m2,m3,m4 be such that m1 “ m3 and m2 “ m4. Initially, we do
not assume that these bodies lie on a circle. In this case, it is helpful to apply a theorem that
describes the central configuration of such a system.
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Figure 4: The case where four co-circular masses form a kite configuration.

Theorem 3.1. Let four masses m1, m2, m3, m4, where m1 “ m3 and m2 “ m4 form a kite
in the clockwise direction. Then we can obtain a central configuration by placing m5 on the
symmetry axis only when m1, m2, m3, m4 form a rhombus.

In this setup, the configuration described by Theorem 3.1 requires that the four masses
m1, m2, m3, m4 must form a rhombus in order for a central configuration to be achievable.
This result is crucial because it implies that, for a central configuration to exist, there must
be a certain geometric relationship between the masses that is stricter than simply arranging
them in a kite shape. Specifically, the shape must be a rhombus, where the two diagonals are
of equal length and the opposite angles are congruent.

Now, we proceed by placing the four masses m1,m2,m3,m4 on a common circle. This
step is critical because, by doing so, we effectively impose the constraint that the masses are
equidistant from the center of the circle. By Theorem 3.1, the central configuration can be
achieved by placing m5 along the symmetry axis of the system. However, as indicated by the
theorem, this will only be possible if the arrangement of the masses m1,m2,m3,m4 satisfies
the additional condition that they form a rhombus.

This result is equivalent to the case we explored earlier in Section 2.2. Therefore, we can
conclude that when four masses are on the same circle and form a kite, we can not obtain
the central configuration by placing the fifth body on the symmetry axis except the case we
studied in 2.2.

3.3 Four Bodies Form a Trapezoid

We now consider the case where the four masses m1,m2,m3,m4 are arranged in a symmetric
trapezoid, as illustrated in Figure 5.

In this configuration, the masses m1 and m3 are equal, as are the masses m2 and m4.
However, we do not assume that these four masses are co-circular at this point.

Let the four masses m1,m2,m3,m4, where m1 “ m3 and m2 “ m4, form a symmet-
ric trapezoid. To analyze the central configuration of this system, we utilize the following
theorem.

Theorem 3.2. Let four masses m1, m2, m3, m4, where m1 “ m3 and m2 “ m4 form a
symmetric trapezoid in the clockwise direction. Then we can obtain a central configuration by
placing m5 on the intersection of diagonals only when m1, m2, m3, m4 form a rhombus.
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Figure 5: The case for four co-circular masses forming a symmetric trapezoid.

In this setup, the key condition for obtaining a central configuration is that the four
masses m1,m2,m3,m4 must form a rhombus. The condition is stricter than simply forming
a symmetric trapezoid, as it requires the trapezoid to have specific geometric properties: the
opposite sides must be equal, and the diagonals must intersect at right angles. This specific
form of the trapezoid ensures that a stable central configuration is achievable.

Now, we proceed by placing the four masses m1,m2,m3,m4 on a common circle. By
doing this, we impose the constraint that all the masses are equidistant from the center of
the circle. According to Theorem 3.2, we can achieve a central configuration by placing m5

at the intersection of the diagonals, but only if the masses m1,m2,m3,m4 form a rhombus.
This result mirrors the analysis from Section 3.1. Therefore, we can conclude that when

four masses are on the same circle and form a symmetric trapezoid, we can not obtain the
central configuration by placing the fifth body on the intersection of diagonals except the case
we studied in 3.1.

3.4 Co-Circular Five Identical Bodies

Let five masses (x1, x2, x3, x4, x5) be placed on the circumference of a circle and the system
is symmetric, with the configuration centered at the origin of the circle (the center of mass
coincides with the origin). The symmetry ensures equal distances between consecutive parti-
cles, forming a regular pentagon. The mutual distances rij between any two particles satisfy
the geometry of a pentagon as Figure 6 shows. Mathematically, five particles lie on a circle

Figure 6: The co-circular five-body central configuration.

10



of radius rC , with positions:

xk “ rCpcos θk, sin θkq, θk “
2πk

5
, k “ 0, 1, 2, 3, 4 . (3.11)

Using the geometry of the pentagon, the distance between two particles mk and mj is:

|xk ´ xj | “ 2rC sin

ˆ

π|k ´ j|

5

˙

, (3.12)

where |k ´ j| is taken modulo 5. For a particle xk, the gravitational force from a particle mj

is:

AjÑk “
mpxj ´ xkq

|xj ´ xk|3
. (3.13)

By symmetry, the net force contributions from all other particles will align radially toward
the origin. In a regular pentagon, the particles are symmetrically distributed about the origin
and the contributions of the forces from all other particles toward mk must sum to a vector
that points radially inward toward the center of the circle.

The total gravitational force acting on mk is:

Ak “
ÿ

j‰k

mpxj ´ xkq

|xj ´ xk|3
. (3.14)

Due to the symmetry of the regular pentagon, the net direction of Ak is along ´xk, and its
magnitude is proportional to |xk| “ rC . Thus, we have:

Ak “ ´λxk, (3.15)

where λ ą 0 is the proportionality constant, determined by the system’s geometry and masses.
We verify the defining condition ´λxk “ Ak explicitly, since the force contributions from

the nearest neighbors (adjacent particles) and the diagonal particles are symmetric, ensuring
the net force aligns with ´xk and the magnitude of the force, computed as:

ÿ

j‰k

m

|xj ´ xk|2
, (3.16)

which is proportional to |xk| “ rC , satisfying the central configuration condition.
The symmetry of the regular pentagon ensures that the net gravitational force on each

particle is radially directed toward the origin and the magnitude of this force is proportional
to the displacement from the origin. Therefore, the regular pentagon satisfies the central
configuration condition, proving it is a central configuration.

4 Conclusion

This study demonstrates that central configurations are fundamentally influenced by the
symmetry and relative positioning of the masses. When four bodies of equal mass form a
square, the placement of a fifth body at the center satisfies the central configuration condition
due to symmetry. Similarly, when the symmetry is slightly relaxed, such as in cases where
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four masses form a rectangle or consist of two identical mass pairs, the configuration can still
satisfy the central configuration condition under certain constraints. However, as symmetry
decreases, the conditions required to maintain equilibrium become increasingly restrictive.

We also explored cases where four bodies do not form a square, such as pentagonal config-
urations, and verified that these systems can achieve central configurations with appropriately
positioned masses. The results emphasize the critical role of geometric symmetry and mass
distribution in ensuring the stability of central configurations. These findings enrich our un-
derstanding of equilibrium structures in gravitational systems and lay a foundation for further
studies in more complex N´body arrangements.
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